sábado, 29 de abril de 2017
viernes, 28 de abril de 2017
DESAFIANDO A LA GRAVEDAD
¿Qué es una serie infinita? La paradoja de Zenón suponía que si se sumaban infinitos números positivos el resultado de dicha cuenta debía ser infinito, pero como ya vimos esto no siempre es así. Las series infinitas (o series matemáticas) son una especie de artilugio matemático para estudiar el resultado de sumas donde intervienen infinitos números. Las series infinitas son fundamentales en el cálculo de áreas y volúmenes de objetos geométricos irregulares. Asimismo las series infinitas nos ayudan a aproximar números irracionales como el número π o el número e.
Si alguna vez has jugado al jenga sabrás que el equilibrio y la gravedad conspiran contra uno, se requiere de mucha destreza y paciencia para resultar ganador. En el siguiente video veremos cómo el conocimiento de las series infinitas nos permite desafiar a la gravedad, logrando construcciones que superan nuestra intuición.
jueves, 27 de abril de 2017
EL PRINCIPIO DE LA PALANCA DE ARQUÍMEDES
Arquímedes es considerado uno de los más importantes científicos de la Grecia Antigua, además de matemático fue también físico, astrónomo, ingeniero e inventor. Entre sus aportes a la matemática se destacan su aproximación al número π (siendo esta la primer aproximación lograda a través de un método), su trabajo pionero en la suma de series infinitas y los llamados sólidos arquimedianos. Sin embargo es dentro de la física donde más fama ha obtenido su obra debido a dos estudios fundamentales: el principio de flotabilidad y la ley de la palanca. Se le atribuye también el uso de la palabra “Eureka”, una historia que contaremos más adelante en el blog.
Si bien no se conocen muchos detalles de su vida personal, se sabe que murió durante el desenlace del sitio de Siracusa a manos de un soldado que desconoció las órdenes del Emperador Romano Marcelo de respetar la vida de un hombre con semejante genialidad. En el siguiente video se analiza la Ley de la Palanca de Arquímedes, que en definitiva puede compararse con jugar al subibaja.
(activa los subtitulos del video)
miércoles, 26 de abril de 2017
martes, 25 de abril de 2017
¿CUÁNTAS VECES SE PUEDE DOBLAR UN PAPEL?
El pensamiento humano ha debido superar las explicaciones intuitivas, pero ¿a qué llamamos intuición? Es un conocimiento que se basa en la percepción y que no emplea un análisis o razonamiento, tiene por tanto sus raíces en el mundo sensorial. Ya hemos hablado sobre las limitaciones de nuestros sentidos y los engaños a los que somos sometidos por nuestra imperfecta percepción del mundo, como ejemplo podemos mencionar a las ilusiones ópticas. Incluso existen teorías científicas, como la Teoría Geocéntrica de Ptolomeo, que si bien se fundamentaban a través de intuiciones han sido refutadas (es decir que se ha demostrado la falsedad de dichas teorías). Cuando comprendemos que la intuición falla descubrimos la oculta complejidad del mundo, que nos sorprende y nos anima a seguir nuestro sinuoso camino hacia el conocimiento.
La matemática es una ciencia formal que se desarrolla a través del razonamiento y el pensamiento lógico, pareciera entonces no dar lugar para el mundo de los sentidos y las intuiciones, sin embargo la geometría plana mantiene un fuerte vínculo con una teoría del mundo plano, siendo esta intuitiva (y falsa). Obviamente por su carácter racionalista la matemática nos ayudará a superar las barreras de lo intuitivo en varias ocasiones, de hecho en el siguiente video se observa un claro ejemplo que se basa simplemente en doblar una hoja de papel.
domingo, 16 de abril de 2017
¿POR QUÉ NO SE PUEDE DIVIDIR ENTRE CERO?
¿Qué es el número cero? En matemática utilizamos el cero para indicar una cantidad nula. Recordemos que en matemática los conceptos ya sea numéricos como geométricos son ideales, es decir que no se corresponden con fenómenos naturales. Sin embargo cuando nos referimos a otros contextos científicos cuyos estudios sí se centran en el mundo natural el cero es un concepto un tanto confuso. ¿Qué significa que la temperatura de un objeto sea cero? Cuando hablamos de temperaturas tenemos muchas escalas de medida. El cero en la escala Celsius indica la temperatura en que el agua se congela mientras que el cero en la escala Kelvin, comúnmente llamado cero absoluto, indica el valor mínimo de temperatura que puede tomar la materia.
Uno de los momentos más desconcertantes que viven los estudiantes es cuando llegan a dudar de un instrumento en el que depositaron toda su confianza: la calculadora. Si divides cualquier número entre cero en tu calculadora notarás que aparece una leyenda que indica que se ha producido un error. Si quieres saber por qué ocurre esto mira el siguiente video.
sábado, 15 de abril de 2017
viernes, 14 de abril de 2017
LA SUCESIÓN DE FIBONACCI Y EL NÚMERO ÁUEREO
Estamos habituados a escuchar un relato occidental del mundo, cuando éste se refiere a la historia de la ciencia se establece entonces un paréntesis oscuro en la Edad Media. Pareciera que entre los aportes de los griegos y las tardías obras del Renacimiento poco y nada haya ocurrido. Sin embargo corresponde aclarar que en el mundo árabe o musulmán se escribieron importantes párrafos del conocimiento universal, particularmente de la matemática. Algunos de los matemáticos árabes más destacados de aquellas épocas son Alhazen, Al-Jwarizmi y Brahmagupta. Además de conservar y traducir los libros de los matemáticos griegos (muchos de los cuáles solo conocemos por sus traducciones al árabe), debemos al mundo musulmán el desarrollo del álgebra, el concepto de cero (número que en occidente se desconocía) e incluso los mismos símbolos que utilizamos para representar los números, pues como recordarás antes se utilizaban los números romanos.
Será Leonardo de Pisa, conocido como Fibonacci, el matemático que introducirá en occidente tanto el sistema de numeración arábigo como el número cero. Asimismo su aporte propio más destacado es la Sucesión de Fibonacci, una asombrosa colección de números que además de tener múltiples aplicaciones en la naturaleza posee una secreta hermosura. Para conocer más sobre dicha sucesión mira el siguiente video.
miércoles, 12 de abril de 2017
¿POR QUÉ USAMOS LA LETRA X EN MATEMÁTICA?
Habitualmente asociamos el lenguaje a las artes, específicamente a la literatura. Obviamente el lenguaje es una herramienta esencial para los poetas, y sus obras constituyen el más bello relato de nosotros mismos como especie. Sin embargo debemos comprender el rol decisivo que toma el lenguaje en el mundo del conocimiento, la ciencia, y, por supuesto, en la matemática. El lenguaje es el instrumento mediante el cual se construye y se transmite el conocimiento, de ahí su función epistémica. Ningún pensamiento puede ocurrir fuera del ámbito del lenguaje, no podemos pensar aquello que no podemos verbalizar. El lenguaje determina, entonces, la manera en que vemos la realidad.
En el libro de Génesis, capítulo 11, podemos encontrar la famosa historia acerca de la Torre de Babel. En ella se narra como la humanidad pretendía realizar una construcción tan elevada que llegara hasta el mismo cielo. Dios no tomó a bien dicha empresa entendiendo que existía un mensaje vanidoso subyacente. Decidió entonces extender las distintas lenguas entre los hombres, y como consecuencia de la confusión que generó esto la torre quedaría inconclusa para siempre. El lenguaje matemático pretende ser tan conciso y unívoco que se vuelve hermético e incomprensible para muchas personas. En el siguiente video se describe por qué en la mayoría de los problemas matemáticos representamos nuestra incógnita con la letra x.
(activa los subtítulos del video)
lunes, 10 de abril de 2017
domingo, 9 de abril de 2017
EL NÚMERO e
Leonhard Euler fue un matemático y físico que vivió entre 1707 y 1783 llegando a ser el más destacado matemático del siglo XVIII. Su obra es sumamente amplia y abarca casi todas las ramas de la matemática. Fue muy cercano a la más famosa familia de matemáticos, los Bernoulli, y también fue amigo de Christian Goldbach. Asimismo sus ideas religiosas le generaron enemigos en todos los lugares donde vivió y hubo quienes cruelmente se burlaron de él llamándolo “Cíclope” después de que perdiera la visión de su ojo derecho.
Fue el primer matemático en trabajar con el concepto de función que hoy utilizamos y simplificó muchísimo la notación matemática de su época haciéndola más accesible. Su Teorema de Poliedros impulsó el nacimiento de la Topología y su resolución del Problema de los Siete Puentes de Konigsberg creó un nuevo campo de estudio: la Teoría de Grafos. Otras aportaciones suyas son el Número de Euler, la Recta de Euler y la Identidad de Euler, esta última es una igualdad donde intervienen los cinco números fundamentales de la historia de la matemática. Justamente en el siguiente video se describe la importancia de uno de estos números, el número e (Número de Euler) y sus particularidades.
miércoles, 5 de abril de 2017
LOS SECRETOS DEL INFINITO
El infinito es paradójico y confuso, las reglas que lo gobiernan son anti-intuitivas por lo cuál es imposible comprenderlo bajo las normas que tenemos para los modelos finitos. ¿Existe el infinito en la naturaleza? Vulgarmente se utiliza la palabra infinito para denotar algo muy grande, ilimitado, o imposible de contar. Pero el infinito va más allá de lo «muy grande» y de la posibilidad humana (temporal) de contar. La noción de infinito como idea de algo ilimitado o inalcanzable, ha sido, entonces, una fuente de confusión a través de la historia. Hay quienes afirman que el universo es infinito, sin embargo esta afirmación no está confirmada. Lo que sí sabemos es que el universo observable es finito por la propia naturaleza de la luz, es una consecuencia directa de la velocidad de la luz. La noción de infinitud puede relacionarse también a la eternidad o la omnipotencia,es decir a los atributos de dios. En la Edad Media, por tal motivo, la discusión sobre infinitos fue entonces más teológica que matemática, concluyéndose que solo dios y sus pensamientos eran infinitos. En este contexto Giordano Bruno fue llevado a la hoguera por predicar un universo conformado por infinitos mundos. Hablar sobre el infinito es peligroso, abre la posibilidad a un mundo nuevo que quizás no todos acepten.
En el mundo de la matemática fue el alemán Georg Cantor quien logró formalizar una teoría de los infinitos que fuera consistente. Lejos de ser reconocido por su trabajo recibió duras críticas de sus contemporáneos que lo sumergieron en la depresión. En el siguiente video se analizan sus revolucionarias conclusiones sobre conjuntos infinitos.
(activa los subtítulos del video)
martes, 4 de abril de 2017
lunes, 3 de abril de 2017
LA PARADOJA DE LA DICOTOMÍA DE ZENON
La filosofía y la matemática parecieran hoy ser dos disciplinas totalmente alejadas, sin embrago están vinculadas desde el mismo nacimiento de la filosofía. Tales de Mileto es reconocido por sus aportes a la matemática y la geometría, pero también es considerado el primer filósofo. Quizás la primera discusión filosófica que podemos mencionar es la protagonizada por Heráclito y Parménides, aunque si bien son contemporáneos y sus pensamientos son totalmente opuestos no existen registros de que fuera una disputa personalizada pues ni siquiera podríamos aseverar que se conocieran. Las ideas de Heráclito se centran en el cambio y la contradicción, quizás su frase más famosa resume su concepción filosófica del mundo: “Todo fluye. Todo está en movimiento y nada dura eternamente. Por eso no podemos descender dos veces al mismo río, pues cuando desciendo al río por segunda vez ni yo ni el río somos los mismos.” Mientras tanto las ideas de Parménides giran alrededor de la naturaleza del ser, concluyendo que “solo podemos hablar y pensar sobre lo que existe. Y lo que existe no ha sido creado y es imperecedero porque es un todo, completo y no cambia.” Como podrás observar sus posiciones son diametralmente opuestas.
Zenon fue un discípulo de Parménides, todas sus obras parecieran defender las ideas de su maestro, siendo sus celebres paradojas el gran argumento de sus discursos. Entre ellas podemos destacar la “Paradoja de Aquiles y la Tortuga” y la “Paradoja de la Flecha”. En el siguiente video se describe su paradoja más relacionada a la matemática.
(activa los subtitulos del video)
domingo, 2 de abril de 2017
LA CINTA DE MOEBIUS
En 1996 se estrenaba la película argentina “Moebius”. La película trata sobre la investigación de un subterráneo perdido, el UM-86, desapareciendo incluso con sus pasajeros y maquinistas a bordo. Dentro del equipo de investigación hay un joven matemático (Daniel Pratt) que será fundamental para dar respuesta a la misteriosa desaparición. Cada vez se van sumando más fallas desconcertantes en la red de subterráneos y como si fuera poco hasta los planos parecen haber desaparecido de los registros. Los familiares y amigos de los pasajeros denuncian las desaparición de sus seres queridos ante la prensa generando presión en los encargados de la investigación que a su vez se pelean entre ellos. Finalmente pareciera que una Cinta de Moebius gobierna con sus particulares características la red de subterráneos.
Esta historia de fantasía absoluta se sostiene sobre un concepto matemático que ante todo nos indica que nuestra percepción del mundo es bastante rígida, pues mínimos cambios en nuestros enfoques de pensamiento generan resultados tan atípicos como antinaturales. El matemático y astrónomo August Moebius se permitió tal libertad ensamblando una cinta de forma antiintuitiva y descubriendo allí una estructura simple y paradójica que nos sigue deslumbrando con su minimal encanto. En el siguiente video se describen algunas de las propiedades de la Cinta de Moebius como también algunas aplicaciones prácticas.
Suscribirse a:
Entradas (Atom)