Desde muy pequeños estamos familiarizados con figuras geométricas diversas, como los triángulos, los círculos o las pirámides. Aprendemos muchos de los misterios sorprendentes relativos a estas figuras con la esperanza de que nos sirvan para algo y sin embargo pareciera que en la naturaleza las formas distan mucho de ser regulares. El matemático Benoit Mandelbrot argumenta lo siguiente: “Las nubes no son esferas, las montañas no son conos, las costas no son círculos, y las cortezas de los árboles no son lisas, ni los relámpagos viajan en una línea recta.” ¿Estudiamos los clásicos conceptos geométricos en vano? La respuesta es no. Obviamente la geometría clásica no es suficiente por lo que fue necesario crear una nueva geometría, la geometría fractal, propuesta justamente por Mandelbrot. Pero para crear esta nueva teoría matemática recurriremos muchas veces a conceptos geométricos clásicos y sobre todo al razonamiento lógico que obtuvimos del estudio de la geometría tradicional.
En el irregular mundo de los fractales nos encontramos con figuras de mayor complejidad como el Copo de Nieve de Koch o la Alfombra de Sierpinski. Estas nuevas formas fractales parecen guardar mayor relación con la naturaleza, por tanto nos serán muy útiles. Entre las múltiples aplicaciones de esta nueva geometría se encuentran la realización de animaciones realistas, la construcción de antenas eficientes y la compresión de datos. En el siguiente video se contesta una pregunta impostergable ¿qué son los fractales?
Este comentario ha sido eliminado por un administrador del blog.
ResponderEliminarEste comentario ha sido eliminado por el autor.
ResponderEliminarpara ver la FICHA DE TRABAJO del video ingresa al siguiente link
ResponderEliminarhttps://drive.google.com/file/d/17iXWsB3rLSfpFA0PW8mXBXHtqdYZJrwC/view?usp=sharing