miércoles, 19 de julio de 2017

martes, 18 de julio de 2017

LA SOBREVENTA DE PASAJES: ¿POR QUÉ OCURRE?

El hombre ha querido volar desde tiempos inmemoriales pero, como sabemos, nuestro cuerpo no nos permite semejante hazaña. Sin embargo, apoyándose en la ciencia, el hombre ha cumplido su sueño. Si bien existieron pioneros en la historia de la aviación, se considera que los hermanos Wright en 1903 protagonizaron el primer viaje en avión. Lamentablemente muchas veces los sueños se transforman en pesadillas... Las guerras mundiales marcarán fuertemente el desarrollo de los aviones y su uso en bombardeos será sumamente destructivo. Esta historia nos obliga a preguntarnos: ¿se puede culpar a la ciencia por sus trágicas consecuencias? 

El conocimiento no es bueno ni malo, sino que ofrece las posibilidades de transformar el mundo, ya sea para bien como para mal. Por tanto ciencia y ética deben ser un binomio inseparable que proteja a la humanidad a la vez que brinde las herramientas para el desarrollo de los hombres. Hoy por hoy los aviones continúan siendo centro de debates por muchos motivos, uno de ellos es la sobreventa de boletos. En el siguiente video se explica como detrás de este problema se esconde el conocimiento matemático utilizado por parte de las aerolíneas.

(activa los subtitulos del video)

lunes, 17 de julio de 2017

LA CAMPANA DE GAUSS

Los contribuciones de Gauss a la matemática son tales que se ganó el apodo de “El Príncipe de los Matemáticos”. Entre estos importantes aportes se encuentran: el método para la construcción de un polígono regular de 17 lados, la observación de que todo número natural es suma de tres números triangulares, la crítica al quinto postulado de Euclides que conlleva la génesis de la Geometría Elíptica e Hiperbólica, y la demostración del Teorema Fundamental del Álgebra. 

Existe además un concepto matemático conocido como la Campana de Gauss, aunque lo cierto es que Gauss no fue el primero en proponer dicha idea. Se trata de la representación gráfica de la distribución normal de un grupo de datos, éstos se reparten en valores bajos, medios y altos, creando un gráfico de forma acampanada. Realmente la distribución normal la descubrió y publicó por primera vez Abraham Moivre. En el siguiente video se explica la importancia de dicha campana en distintos ejemplos de probabilidad y estadística.


domingo, 16 de julio de 2017

sábado, 15 de julio de 2017

LA FUNCIÓN DE ONDA DE SCHRODINGER

En el siglo XX aparecieron dos teorías de la física que revolucionaron nuestro entendimiento del universo, por un lado la Teoría de la Relatividad General y por el otro la Mecánica Cuántica. Eso sí, estas teorías parecen irreconciliables y el mayor desafío de la física actual es establecer una teoría que unifique estos dos campos de la física. Sin embargo existen científicos renombrados, como Stephen Hawking, que están convencidos de que no se podrá llegar a obtener dicha teoría debido a un resultado matemático: El Teorema de Incompletitud de Godel. 

La Mecánica Cuántica explica los fenómenos físicos que ocurren a nivel subatómico, por ejemplo los protagonizados por electrones. Pero entender la naturaleza de un electrón no es cosa sencilla, el experimento de la doble rendija evidencia dos conceptos fundamentales de la física cuántica: el principio de incertidumbre de Heisenberg y la llamada dualidad onda-partícula. ¿Es el electrón una partícula o una onda? Como veremos responder esto no es fácil, ni desde el punto de vista físico ni desde el punto de vista matemático. En el siguiente video se explica la importancia de la Función de Onda de Schrodinger, un importante aporte de la matemática a la Mecánica Cuántica.


viernes, 14 de julio de 2017

¿QUÉ SON LOS NÚMEROS COMPLEJOS?

Antes que nada: ¿qué es un número? La definición de la RAE indica que un número es una expresión (conceptual) de una cantidad con relación a una unidad, esto significa que para entender qué es cinco naranjas debo entender qué es una naranja, pues una naranja sería en este caso la unidad. Si bien es verdad que de esta forma podemos entender conceptualmente los números reales no es menos cierto que el concepto de infinito cumple esta definición también, y el infinito no es un número. En matemática llamamos número a todo elemento de un conjunto dotado de dos operaciones, generalmente llamadas suma y multiplicación, que cumplen propiedades intuitivas como la propiedad asociativa, conmutativa o distributiva. En definitiva algo es un número si se lo puede sumar y multiplicar sin ocasionar problemas.

Siempre que se “descubre” un número está de alguna manera relacionado a un problema concreto al que no se podía dar solución con los números conocidos de antemano. De esta forma se abren las puertas de un nuevo sistema numérico que dará respuesta a problemas similares. En el siguiente video se explica el surgimiento de los números complejos, especialmente de la unidad imaginaria también conocida como número i.